11,210 research outputs found

    Colorectal Cancer Brochure Development for African Americans

    Full text link
    Introduction: African Americans are more likely to die from colorectal cancer (CRC) than any other racial/ethnic group in the United States. Unfortunately, African Americans are also less likely to undergo screening for CRC than their White counterparts. Focus groups methodology was used to refine educational brochures designed to increase CRC screening among African Americans. Methods: Two series of focus groups were completed, with a total of seven groups and 39 participants. Six different brochures (stage-matched and culturally sensitive) designed to promote CRC screening among African Americans were evaluated. Results: All participants thought that the brochures motivated them to talk with their health care providers about screening. Cost, pain, medical mistrust and fear were identified as major barriers and the brochures were modified to address these concerns. Conclusions: Focus groups methodology with African Americans can be used to inform brochures designed to increase African Americans CRC screening that addresses their major concerns

    Skeleton and fractal scaling in complex networks

    Full text link
    We find that the fractal scaling in a class of scale-free networks originates from the underlying tree structure called skeleton, a special type of spanning tree based on the edge betweenness centrality. The fractal skeleton has the property of the critical branching tree. The original fractal networks are viewed as a fractal skeleton dressed with local shortcuts. An in-silico model with both the fractal scaling and the scale-invariance properties is also constructed. The framework of fractal networks is useful in understanding the utility and the redundancy in networked systems.Comment: 4 pages, 2 figures, final version published in PR

    A Prismatic Analyser concept for Neutron Spectrometers

    Get PDF
    A development in modern neutron spectroscopy is to avoid the need of large samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can be combined with advanced focusing geometries and with multiplexing instrument designs. We present a combination of simulations and data with 3 energies from one analyser. The data was taken on a prototype installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2 times finer resolution and a factor 1.9 in flux gain compared to a Rowland geometry or 3 times finer resolution and a factor 3.2 in flux gain compared to a single flat analyser slab

    Dynamic Path Integral Methods: A Maximum Entropy Approach Based on the Combined use of Real and Imaginary Time Quantum Monte Carlo Data

    Get PDF
    A new numerical procedure for the study of finite temperature quantumdynamics is developed. The method is based on the observation that the real and imaginary time dynamical data contain complementary types of information. Maximum entropy methods, based on a combination of real and imaginary time input data, are used to calculate the spectral densities associated with real time correlation functions. Model studies demonstrate that the inclusion of even modest amounts of short-time real time data significantly improves the quality of the resulting spectral densities over that achievable using either real time data or imaginary time data separately

    Impurity Scattering of Wave Packets on a Lattice

    Full text link
    Quantum transport in a lattice is distinct from its counterpart in continuum media. Even a free wave packet travels differently in a lattice than in the continuum. We describe quantum scattering in a one dimensional lattice using three different formulations and illustrate characteristics of quantum transport such as resonant transmission. We demonstrate the real time propagation of a wave packet and its phase shift due to impurity configurations. Spin-flip scattering is also taken into account in a spin chain system. We show how individual spins in the chain evolve as a result of a spin-flip interaction between an incoming electron and a spin chain.Comment: submitted to Phys. Rev.

    Dietary supplementation with Bifidobacterium longum subsp. infantis (B. infantis) in healthy breastfed infants: study protocol for a randomised controlled trial.

    Get PDF
    BackgroundThe development of probiotics as therapies to cure or prevent disease lags far behind that of other investigational medications. Rigorously designed phase I clinical trials are nearly non-existent in the field of probiotic research, which is a contributing factor to this disparity. As a consequence, how to appropriately dose probiotics to study their efficacy is unknown. Herein we propose a novel phase I ascending dose trial of Bifidobacterium longum subsp. infantis (B. infantis) to identify the dose required to produce predominant gut colonisation in healthy breastfed infants at 6 weeks of age.Methods/designThis is a parallel-group, placebo-controlled, randomised, double-blind ascending dose phase I clinical trial of dietary supplementation with B. infantis in healthy breastfed infants. The objective is to determine the pharmacologically effective dose (ED) of B. infantis required to produce predominant (>50 %) gut colonisation in breastfed infants at 6 weeks of age. Successively enrolled infant groups will be randomised to receive two doses of either B. infantis or placebo on days 7 and 14 of life. Stool samples will be used to characterise the gut microbiota at increasing doses of B. infantis.DiscussionProbiotic supplementation has shown promising results for the treatment of a variety of ailments, but evidence-based dosing regimes are currently lacking. The ultimate goal of this trial is to establish a recommended starting dose of B. infantis for further efficacy-testing phase II trials designed to evaluate B. infantis for the prevention of atopic dermatitis and food allergies in at-risk children.Trial registrationClinicaltrials.gov # NCT02286999 , date of trial registration 23 October 2014

    Leptonic decay-constant ratio f_{K^+}/f_{pi^+} from lattice QCD with physical light quarks

    Full text link
    A calculation of the ratio of leptonic decay constants f_{K^+}/f_{\pi^+} makes possible a precise determination of the ratio of CKM matrix elements |V_{us}|/|V_{ud}| in the Standard Model, and places a stringent constraint on the scale of new physics that would lead to deviations from unitarity in the first row of the CKM matrix. We compute f_{K^+}/f_{\pi^+} numerically in unquenched lattice QCD using gauge-field ensembles recently generated that include four flavors of dynamical quarks: up, down, strange, and charm. We analyze data at four lattice spacings a ~ 0.06, 0.09, 0.12, and 0.15 fm with simulated pion masses down to the physical value 135 MeV. We obtain f_{K^+}/f_{\pi^+} = 1.1947(26)(37), where the errors are statistical and total systematic, respectively. This is our first physics result from our N_f = 2+1+1 ensembles, and the first calculation of f_{K^+}/f_{\pi^+} from lattice-QCD simulations at the physical point. Our result is the most precise lattice-QCD determination of f_{K^+}/f_{\pi^+}, with an error comparable to the current world average. When combined with experimental measurements of the leptonic branching fractions, it leads to a precise determination of |V_{us}|/|V_{ud}| = 0.2309(9)(4) where the errors are theoretical and experimental, respectively.Comment: 6 pages, 1 table, 2 figures; v3: result for f_{K^+}/f_{pi^+} updated to include additional data; typo in some values of L in Table 1 corrected; typo in sign of 1-|V_{ud}|^2-|V_{us}|^2-|V_{ub}|^2 corrected; version to be published in Phys. Rev. Let

    Improving technology transfer through national systems of innovation: climate relevant innovation-system builders (CRIBs)

    Get PDF
    The Technology Executive Committee (TEC) of the United Nations Framework Convention on Climate Change (UNFCCC) recently convened a workshop seeking to understand how strengthening national systems of innovation (NSIs) might help to foster the transfer of climate technologies to developing countries. This article reviews insights from the literatures on Innovation Studies and Socio-Technical Transitions to demonstrate why this focus on fostering innovation systems has potential to be more transformative as an international policy mechanism for climate technology transfer than anything the UNFCCC has considered to date. Based on insights from empirical research, the article also articulates how the existing architecture of the UNFCCC Technology Mechanism could be usefully extended by supporting the establishment of CRIBs (climate relevant innovation-system builders) in developing countries – key institutions focused on nurturing the climate-relevant innovation systems and building technological capabilities that form the bedrock of transformative, climate-compatible technological change and development
    • …
    corecore